115EDT01	ADVANCED MATHEMATICS	L	Т	Р	С
IICLDIVI		3	1	0	4
OBJECTIVE	S:			-	
\Box To so	lve linear systems by methods of elimination, triangularis	satic	on and	itera	ation,
metho	od of finite differences and Rayleigh Ritz methods.				_
\Box To ki	now the methods for solving numerically partial diffe	rent	ial eq	uati	ons of
parab	olic, elliptic and hyperbolic types with appropriate b	oun	dary a	and	initial
condi	tions encountered in engineering design.			~	
UNIT I SIM	ULTANEOUS EQUATIONS AND NUMRICAL INT	EG	RATI	ON	12
Solution of s	system of equations, Direct methods: Gauss eliminatio	n n	nethod	, Cł	ioleski
method, Itera	tive methods: Relaxation method. System of non-linear	equ	ations	- N	lewton
Raphson met	hod – Newton-Cotes integration formulae - Trapezoidal i	rule	, Simp	son	's rule,
Gaussian qua	drature.				
UNIT II B	OUNDARY VALUE & EIGENVALUE PROBLEMS)			12
Shooting met	hod, solution through a set of equations, derivative bound	lary		tion	.S,
Characteristic	c value problems and solution using characteristic polyno	mia	I meth	od,	Jacobi
method, pow	er method and Inverse of a matrix by power method.				10
	ALCULUS OF VARIATIONS	- c	c	. 1 1. 9	12
variation and	its properties – Euler's equation – Functional dependent	10	irst ar		gner
order derivati	lves – Functionals dependent of functions of several indep	pend	aent va	ariat	oles –
Rayleigh Ritz	z method – Galerkin method.			. 	
UNIT IV PA	ARTIAL DIFFERENTIAL EQUATIONS – NUMERI	CA	L 501	LUI 12	IONS
Lonloos sou	ations approachtations of a difference constion. Its			14	da far
Laplace equ	ations, representations as a difference equation, the	rati	ve me	etno	us for
Laplace's equ	utions. Poisson equation, derivative boundary condition	s, 1r	regula	r an	d non-
rectangular g	gnus. Mairix patterns, Sparseness, ADI method, Appin		ons to	nea	I HOW
problems.					10
UNIT V PA	ARABULIC PARTIAL DIFFERENTIAL EQUATIO		on at	. L :1:	12 ty and
Explicit met	anitaria. Develoalia aquationa in two or more dimensional		on, su		ty and
flow problem	cinena. Farabolic equations in two of more dimensions,	app	mcaul	JIIS	lo neat
	15.	то	тат •	60 1	Hours
		10	IAL:	001	nours

E. CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

Students will be able to

- Understand the basic concepts of mechanics of materials.
- Calculate the stresses and deflection in unsymmetrical beams.
- Calculate the stresses and strains associated with thick-wall cylindrical pressure vessels and rotating disks, non circular rotating shafts.
- Calculate the stresses and strains in flat plates and torsion of noncircular cross section members.
- Solve problems related to boundary conditions.

REFERENCE BOOKS:

- 1. Richard L.Burden, J.Dougles Faires and Annette M. Burden, "Numerical Analysis", Tenth Edition, Cengage, 2016.
- 2. Curis F Gerald and Patrick O Wheatley, "Applied Numerical Analysis", Pearson Education, 2002.
- 3. Gupta, A.S., "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 2010.
- 4. Elsgolc, L.E., "Calculus of Variations", Dover Pub., 2007.
- 5. Steven C Chapra and Raymond P Canale, "Numerical Methods for Engineers with software and programming Applications", Tata McGraw Hill Edition, 2004.
- 6. Ward Cheney and David Kincaid, "Numerical Mathematics and Computing", Brooks/Cole Publishing company, Fourth Edition, 1999.
- 7. Sankara Rao, K., "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd., New Delhi, 2012.
- 8. Jain M K, Iyengar S R K, and Jain R K, "Computational Methods For Partial Differential Equations", New age International (P) Ltd, 1994.

	Course Outcome	P 0 1	P O 2	P O 3	Р О 4	Р О 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Understand the basic concepts of mechanics of materials.	3	3	3	3	-	-	-	-	-	-	-	1	3	3	1
Co2	Calculate the stresses and deflection in unsymmetrical beams.	3	3	3	3	-	-	-	-	-	-	-	1	3	3	-
Co3	Calculate the stresses and strains associated with thick-wall cylindrical pressure vessels and rotating disks, non circular rotating shafts.	3	3	3	3	-	-	-	-	-	-	-	1	3	3	-
Co4	Calculate the stresses and strains in flat plates and torsion of noncircular cross section members.	3	3	3	3	-	-	-	-	-	-	-	2	3	3	2
Co5	Solve problems related to boundary conditions.	3	3	3	3	-	-	-	-	-	-	-	2	3	3	2

115EDT02	5EDT02 ADVANCED MECHANICS OF MATERIALS L T P					
115ED102	ADVANCED MECHANICS OF MATERIALS	3	1	0	4	
OBJECTIVE	S:					
\Box To underst	and the basic concepts of mechanics of materials.					
□ To calcula	te the stresses and deflection in unsymmetrical beams.					
□ To calcula	te the stresses and strains associated with thick-wall cylindrica	ıl pro	essure	vess	els and	
rotating di	sks, non circular rotating shafts.					
\Box To calcula	te the stresses and strains in flat plates and torsion of non	circ	ular c	ross	section	
members.						
DDDDDDDUU						
PREREQUIS	TTE: Knowledge of Strength of Materials is required.			4		
UNIT I ELA	STICITY		1	. I.	I 1 1	
Stress and S	rain relation, General equation of elasticity in cartesian,	po Bou	lar an	ia sp	ditions	
Representation	on of three dimensional stress of a tension. Generalized Hook	boui	luary Jaw S	t Ve	unuons, nnant's	
principle Plan	e strain plane stress Airy's stress function Shear Centre Lo	ce s ocati	on of \int	shear	r centre	
for various sec	tions, shear flow.	Jouri	011 01	Silea	contro	
UNIT II UNS	SYMMETRICAL BENDING			1.	3	
Stresses and d	eflection in beams subjected to unsymmetrical loading – Ker	n of	a sect	ion,	Curved	
flexural memb	ers, circumferential and radial stresses, Deflection and radial	cur	ved be	am v	with re-	
strained ends,	Closed ring subjected to concentrated load & uniform load	, Cł	nain li	nk &	c Crane	
hooks.						
UNIT III TH	IICK CYLINDERS AND ROTATING DISCS		~	1.	3	
Thick walled o	ylinder subjected to internal and external pressures, Shrink fit	joir	nts, Str	resses	s due to	
rotation, Radia	al and tangential stresses in solid disc and ring of uniform t	thick	cness	and	varying	
UNIT IV TO	SION OF NON CIRCULAR SECTIONS			1	1	
Torsion of rec	stangular cross section St Vennant Theory Flastic membra	ne	analog	v P	I randtl's	
stress function	Torsional stresses in hollow thin walled tubes	ine a	inalog	y, 11	landti s	
UNIT V STR	ESSES IN FLAT PLATES			12	2	
Stresses in cir	cular and rectangular plates due to various types of loading	g an	d end	con	- ditions,	
Buckling of pl	ates, Theory of contact stresses – methods of computing conta	ict s	tresses	, De	flection	
of bodies in po	bint and line contact – applications.					
Î		ТО	TAL	: 60]	Hours	

G CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

Students will be able to

- Understand the basic concepts of mechanics of materials.
- Calculate the stresses and deflection in unsymmetrical beams.
- Calculate the stresses and strains associated with thick-wall cylindrical pressure vessels and rotating disks, non circular rotating shafts.
- Calculate the torsion of noncircular cross section members.
- Calculate the stresses and strains in flat plates.

TEXT BOOKS:

- 1. Arthur P.Boresi and Richard J.Schmidt, "Advanced Mechanics of Materials", John Willey & Sons Inc., 6th Edition, 2009.
- Antony E. Armenakas, "Advanced Mechanics of Materials and Applied Elasticity", Taylor & Francis, 2013.

REFERENCE BOOKS:

- 1. Robert D.Cook, Wareen.C.Yound, "Advanced Mechanics of Materials", Macmillon Publishers Company, 2nd Edition, 1999.
- Srinath.L.S., "Advanced Mechanics of Solids", Tata McGraw Hill Publishing Company Ltd., 3rd Edition, 2010.
- 3. Krishna Raju, N. and Gururaja.D.R., "Advanced Mechanics of Solids and Structures", Narosa Publishing House, 1997.

	Course Outcome	Р О 1	P O 2	P O 3	Р О 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Understand the basic concepts of mechanics of materials.	3	2	-	1	2	-	-	-	-	-	-	2	1	-	-
Co2	Calculate the stresses and deflection in unsymmetrical beams.	2	1	-	1	-	-	-	-	-	-	-	2	1	1	-
Co3	Calculate the stresses and strains associated with thick-wall cylindrical pressure vessels and rotating disks, non circular rotating shafts.	2	2	-	2	1	-	-	-	-	-	-	2	1	-	-
Co4	Calculate the torsion of noncircular cross section members.	2	1	-	2	2	-	-	-	-	-	-	2	-	-	-
Co5	Calculate the stresses and strains in flat plates.	2	1	-	3	2	-	-	-	-	-	-	2	-	-	1

115EDT03	CONCEPTS OF ENGINEERING DESIGN	L	T	P	<u>C</u>
OBJECTIVE	S:	3	U	U	3
\Box To unders	tand about the design process and various tools used in ϵ	engir	neerin	g de	sign.
\Box To gain the second	he knowledge about the selection of material for design a	nd tl	neir p	roces	ssing.
\Box To known	the role of environmental issues in design.		1		C
UNIT I THE	DESIGN PROCESS			08	3
The Design Pr	ocess - Need identification - Design requirements - Product I	Life (Cycle -	– Mo	rphology
of Design step	s of Product Design – Conceptual Design, Embodiment De	esign	, Deta	iled	Design –
Concurrent En	gineering – CAD & CAM, Human factors in Design.				
Creativity and	Problem solving Decision Theory Modeling – Role of	mo	dels i	n En	vineering
Design, Matl	nematical Modeling, Geometric modeling, Finite Ele	ment	Mod	eling	, Rapid
Prototyping -	Simulation Finite Difference method, Monte Carlo met	thod	- Oj	ptimi	zation –
Search Metho	ds, Geometric programming, Structural and Shape optimiza	tion.			
UNIT III M	ATERIAL SELECTION AND MATERIALS IN DESIGN	I	_	09)
Classification	and Properties of Engineering materials, Material Standa	rds	and sp	eciti	cations –
indices Use	of material selection Chart Rugh selection method Se	Dei	ivatio	n oi ith c	material
aided database	es – Design for brittle fracture. Design for fatigue failure		esign	for o	corrosion
resistance. De	signing with plastics.	, 2	551811	101	Joirobion
UNIT IV MA	FERIAL PROCESSING AND DESIGN			09)
Classification	of manufacturing processes and their role in design,	Fact	ors de	term	ining the
process select	ion, Use of process selection chart and computerized da	itaba	se –	De	esign for
manufacturing	, Design for forging and sheet metal forming, Design	for	castin	g, D	esign for
machining, we	Iding and assembly, Design for residual stresses and heat treat	tmen	t FS D	NT 1	DESIGN
AND OUALI	GAL, EIHICAL ENVIRONMENTAL AND SAFETT I	1990	LS II	ע א 1(DESIGN
Origin of law	vs, Contracts, Liability, Tort Law, Product Liability, De	sign	aspect	ts of	product
liability, Code	es of ethics, Solving ethical conflicts, Design for envi	ronm	ient -	- Li	fe Cycle
assessment, N	laterial recycling and remanufacture, Design for safety -	- Pot	ential	Dan	gers and
Guidelines for	design for safety, Design for reliability failure mode effect a	naly	sis, Ro	bust	Design.
		T	OTAI	L:4	5 Hours
COURSE OU	TCOMES:				
Students will	be able to				
• Implement	t the design process and various tools for product design				
• Make the	decision about the tools for product design and their pro-	cessi	ng.		
Incorpora	te the issues material selection.				
Know abo	but material processing and design				
Know abo	but legal and ethical issues in design.				
TEXT BOOK	8.				
1. Dieter Geo	brge E. "Engineering Design – A Materials and Processing A	ppro	ach".	McG	raw Hill.
Internation	al Edition, Singapore 2012.		,		· · ·
1. Karl T. U	Ilrich and Steven D. Eppinger, "Product Design and Devel	opm	ent", l	McG	raw Hill,
Internation	al Edition, 2011.				
REFERENCE	BOOKS:		. ~		
1. Gerhard P	ahl and Beitz W, "Engineering Design: A Systematic Appro	oach	", Spr	inger	, Verlag,
2 Double MS	"Edition, 2007. "Elements of Engineering Design: An Integrated Approach"	Dron	tion U	011 In	0 1025
2. Ray M.S., 1 Sub N P	"The Principles of Design" Oxford University Press, New Y	Pren Ork			C. 1985.
1. Juli. IN. F.,	The rimeiples of Design, Oxford Oniversity (1658, New 1	TA,	$\overline{\mathbf{x}}$		
		عر	9		
	CH	AIF	AMA	L	
	BOARD	OF	NICA	IDI JDI	GINEERI
	FACULTY OF MIL Adhiyamaan	Colle	ege o	f End	gineering
	Ho	sur -	635	109.	

	Course Outcome	P 0 1	P O 2	P O 3	Р О 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Implement the design process and various tools for product design.	2	3	-	-	2	-	-	-	1	1	1	-	2	-	-
Co2	Make the decision about the tools for product design and their processing.	2	2	-	-	2	-	-	-	1	1	1	-	2	-	-
Co3	Incorporate the issues material selection.	2	2	-	-	2	-	-	-	1	1	1	-	2	-	1
Co4	Know about material processing and design	1	2	-	-	2	-	-	-	1	1	1	-	2	-	-
Co5	Know about legal and ethical issues in design.	1	1	2	2	2	-	-	-	1	1	1	-	2	-	2

115EDT04	COMPUTER APPLICATIONS IN DESIGN	L	T	P	C
		3	0	0	3
□ To unders	tand about the application of computer graphics in design.				0
\square To under	stand the concepts of geometrical modeling and rever	se	engine	erin	g of
componen	nts.				
\Box To unders	tand computer tools in tool design and design productivity	•			
\Box To gain k	nowledge about managing product design data using comp	uter	•		
DDDDDDUUG				- 1	
PREREQUIS	ITE: Fundamentals of Computer and Programming, Design of	Mac	chine E	lem	ents,
Design of Tran	ISMISSION Systems.	NIE			UCT
DESIGN	IRODUCTION TO COMPUTER APPLICATIONS IN	NE	W PF		UCI
Concept desi	an Parametric sketching Constraints Computer graphic		Princi	09 nles-	2D
transformation	scaling rotation windowing view ports clipping data exchar	loe f	ormats	pies-	20
UNIT II CO	MPUTERS IN DESIGN	1501	omuto	09	
Solid modelin	g of Mechanical components. Associative features. Sheet	me	tal cor	npor	nents.
Nesting and de	evelopment, Plastic parts with draft and shrinkage allowance,	Rev	erse en	igine	ering
of components	, Assembly of parts, Tolerance analysis, Mass property calcul	atior	ns.	0	0
UNIT III CO	OMPUTERS IN TOOLING DESIGN			09	
Mould design,	jigs and fixtures design, Check for interferences, Mechanism	desi	gn and	l ana	lysis,
Rapid tooling.					
UNIT IV CON	MPUTERS IN DESIGN PRODUCTIVITY			09	
Customizing	various software by using visual basic, pro/program, script,	LIS	SP etc	to	write
applications lil	the design of shafts, gears etc.,			0.0	
UNIT V MAI	NAGING PRODUCT DESIGN DATA	11	- 1 4	09	
version contro	I, Library creation, catalog making, standardization for design,		aborati	ve a	esign
among peer gr	T			5 H	MIRC
COURSEOU	TCOMES	UI		5 110	Juis
Students	vill be femiliarized with the computer graphics application	in	lacian		
• Students	will be able to ask of CAE makers that arise in an sinearing	~	Jesign	•	
• Students	will be able to solve CAE problems that arise in engineerin	g.		•••	•
• Students	will be able to write program functions to implement g	rapn	ics pr	imit	ives,
geometric	al transformations and the use of object hierarchy in graph	1CS a	applica	atior	ns.
• Students v	will be able to write program by using languages like visua	l ba	sic, Ll	ISP,	etc
• Students v	will be able to know about library creation, catalog making	, etc	;		
TEXT BOOK	S:	-		~	
I. William N	A. Neumann and Robert Sproul, "Principles of Interactive C	Com	puter (Grap	hics"
McGraw F	IIII BOOK CO., Singapore, 1989.	0.00.01	E.J.4.		010
Z. IDFANIM ZO	RU, CAD/CANI – Theory and Practice ⁺ , MCOraw Hill Internati	ona	E01110	лı, 20	010.
1 D N Doo	"CAD/CAM: Principles and Applications" Tata McGraw U	;11	Second	1 FA	ition
2011		111,	Scont	тĽч	111011,
2. Schlechten	dahl E. G. "CAD – Data transfer for Solid Models". Springer V	Verla	g. Ber	lin. 1	989.
3. Donald He	arn and M Pauline Baker, "Computer Graphics". Prentice Hall	Inc.	2004.	, 1	
2. 20mara inc		v ,			

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Students will be familiarized with the computer graphics application in design.	1	-	-	1	-	-	2	1	1	-	3	3	2	3	-
Co2	Students will be able to solve CAE problems that arise in engineering.	3	-	-	-	-	-	3	-	-	-	3	2	-	3	-
Co3	Students will be able to write program functions to implement graphics primitives, geometrical transformations and the use of object hierarchy in graphics applications.	3	2	-	-	2	3	-	2	-	2	1	3	1	3	-
Co4	Students will be able to write program by using languages like visual basic, LISP, etc	2	1	1	-	-	-	-	-	-	-	1	2	1	3	-
Co5	Students will be able to know about library creation, catalog making, etc	1	-	-	-	-	-	-	1	3	-	1	3	-	3	-

115EDT05	ADVANCED FINITE ELEMENT ANALYSIS	L 3	T 1	P 0	C 4
OBJECTIVE	۱ ۶:	5	L	U	-7
\Box To for	rmulate and analysis of 1D 2D 3D analysis arising in engi	nee	ring d	esio	า
\square Provid	de further Advanced FEA knowledge and techniques for	· co	lving u	Dvn	amic
	vie	30	iving	Dyn	anne
	denston d the thermal and fluid flow, muchlenes hav EE A				
	ITE Knowledge of Numerical Matheds and Strength of Mater	. 1.	oro roc	mira	1
INEREQUIS	THE - Knowledge of Numerical Methods and Strength of Mater	lais	ale lec	luneo	1.
UNIT I ONE	E DIMENSIONAL ANALYSIS			12	
Relevance of	finite element analysis in design, Modeling and discretiz	atio	n, Inte	rpola	ation,
elements, node	es and Degrees of Freedom, Applications of FEA, Variational	me	thods,	Pote	ential
energy method	l - Weighted residual methods, Galerkin method, One Dimen	sior	al Elei	ment	s and
Computational	Procedures: Bar element, Beam element, Truss element	, S	Shape	funct	tions,
Element matri	ces and vectors - Assembly of elements - Boundary cond	itior	ns - Se	olutio	on of
equations, Med	chanical loads and stresses, Example problems.				
UNIT II TW	VO AND THREE DIMENSIONAL ANALYSIS			12	
Basic Bounda	ry Value Problems in two-dimensions – Triangular, quadril	ater	al, hig	her	order
elements, Po	isson's and Laplace's Equation, Weak Formulation, Introdu	ictic	on to '	Theor	ry of
Elasticity – Pla	ane Stress – Plane Strain and Axisymmetric Formulation, Prince	ciple	e of vii	rtual	work
– Element ma	trices and vectors, Three dimensional stress and strain $-1e$	trah	edral I	lem	ent –
Hexanedral El	ODADAMETRIC EODMULATION			12	
Natural Co. o	rdinate Systems Lagrangian Interpolation Polynomial	c	Icon	14 orom	otric
Flements Ri	linear Isonarametric quadrilateral elements – shape functio	n I	acobia	n m	atrix
strain displac	ement matrix stress-strain relationship matrix force ver	ctor	Ison	aram	etric
Formulation -	triangular element – rectangular elements – Serendipity el	lem	ents. N	Jume	erical
Integration - C	Gauss quadrature – Stress calculations, Examples problems.		, -		
UNIT IV DYN	NAMIC ANALYSIS			12	
Introduction,	Equations of motion, Axial vibration of rod, Transverse	Vibr	ation	of b	eam,
Formulation of	of element stiffness, Mass and force matrices, Lumped an	nd (consist	tent	mass
matrices, Nat	tural frequencies, Eigen Values and Eigen Vectors, Mo	de	shapes	s, V	ector
iteration meth	ods, Transient vibration, Example problems.				
UNIT V THE	RMAL AND FLUID FLOW ANALYSIS			12	
Steady state 1	heat transfer, Heat transfer with convection, One Dimension	onal	Finite	Ele	ment
Formulation, 7	Two Dimensional Finite Element Formulation, Basic differentia	al e	quatior	is of	fluid
flow, One E	Dimensional Finite Element Formulation, Two Dimensior	nal	Finite	Ele	ment
Formulation, E	Example problems.				
	T	TO	AL: e	50 Ho	ours
	()F				
		7			
	CHAIF	MA	N		
	BOARD OF	S	FUDI	LS	EERI

- Students will capable of formulate and analysis of 1D, 2D and 3D Problems.
- Students will able to solve dynamic analysis problem using FEA
- Students will have the ability to apply finite element to formulate and solve fluid, thermal and vibration problems.
- Students will have the ability to derive element matrices and vectors by different methods by applying basic laws in mechanics and integration by parts.
- Students will have the ability to solve problems related to thermal and fluid flow.

TEXT BOOKS:

1. Daryl L Logan, "A First course in the finite element method", Cengage learning, 6th Edition, 2017.

2. Seshu P, "A Text book on Finite Element Analysis", Prentice Hall of India, New Jersey, 2003. **REFERENCE BOOKS:**

- 1. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", Wiley Student Edition, 4th Edition, 2008.
- 2. David V Hutton, "Fundamentals of Finite Element Analysis", McGraw Hill Int. Ed., New Delhi, 2004.
- 3. Chandrupatla T R and Belegundu A D, "Introduction to Finite Elements in Engineering", Third Edition, Prentice Hall, 2002.
- 4. S.S.Rao, "The Finite Element Method in Engineering", Butterworth-Heinemann, 2010.
- 5. Bathe K.J., "Finite Element Procedures in Engineering Analysis", Prentice Hall, 1996.
- 6. J. N.Reddy, "An Introduction to the Finite Element Method", McGraw Hill International, 2005.

	Course Outcome	P O 1	P O 2	P O 3	Р О 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Students will capable of formulate and analysis of 1D, 2D and 3D Problems.	2	-	1	-	-	-	3	-	-	-	1	1	-	2	-
Co2	Students will able to solve dynamic analysis problem using FEA	-	1	1	-	-	2	-	-	-	-	-	1	3	-	1
Co3	Students will have the ability to apply finite element to formulate and solve fluid, thermal and vibration problems.	-	2	-	-	-	1	-	-	-	-	1	1	2	-	-
Co4	Students will have the ability to derive element matrices and vectors by different methods by applying basic laws in mechanics and integration by parts.	-	3	-	-	-	2	-	-	1	-	-	-	-	2	-
Co5	Students will have the ability to solve problems related to thermal and fluid flow.	-	2	-	-	-	1	-	-	-	2	-	-	-	-	3

115EDP07	CAE LAB - 1	L	Т	P	С
ODIECTIVES	.	0	0	4	2
OBJECTIVES	».				
🗆 To impar	t knowledge on simulation of different mechanisms like 4-	bar, s	slider	and	cam
mechanis	ms using the simulation softwares.				
□ To under	stand the types of element used type of analysis done, inter	preta	tion o	of re	sults,
method of	f solving and analyzing the problem.				
\Box To have b	better knowledge in finite element analysis software, applied to	o stru	ctural	, the	rmal,
dynamic a	analysis.				
Simulation of	mechanisms using simulation software like MATLAB/ADAM	/IS et	c.	15	
Simulation of r	nechanism: Simple pendulum, Four bar mechanism, Slider cra	nk me	echan	ism,	Cam
and Follower m	nechanism, Spur gear drive, Piston and Cylinder.				
Analysis of me	chanical machine components using analysis software like A	NSY	S/ N	AST	RAN
etc.			30		
Static Structura	l analysis: Truss, Bar, Beam, Axisymmetric analysis.				
Dynamic analy	sis: Modal, Harmonic, Transient analysis, Buckling analysis,	Non	linea	r ana	ılysis
Thermal analy	sis: Conduction heat transfer, Heat transfer with Conduction	on ar	nd Co	onvec	ction,
Transient heat of	conduction analysis.				
Coupled field a	nalysis, Contact analysis, Fluid flow analysis and Design optimi	zatio	n.		
COURSE OUT	ICOMES:				
• Students	will have the ability to apply the concepts of simulations in	vario	ous m	lecha	inical
engineerii	ng applications.				
• Student w	ill able to solve the structural, thermal, fluid analysis				
• Students	will be familiarized with the analysis packages which are ne	cessa	rv to	solv	e the
engineerii	ng problems numerically.		5		
• Students	will have the ability to solve real time problem based on F	EA t	echni	ques	5.
• Students	will know more about design optimization			1	
- Students	, in allow more about design optimization.				
		тот	АТ.	/E TI	lone
		101	AL:	43 H	ours

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Students will have the ability to apply the concepts of simulations in various mechanical engineering applications.	2	1	-	-	-	-	-	-	-	1	-	-	2	-	-
Co2	Student will able to solve the structural, thermal, fluid analysis	2	1	1	-	-	1	1	-	-	1	-	-	2	-	-
Co3	Students will be familiarized with the analysis packages which are necessary to solve the engineering problems numerically.	2	1	1	-	-	1	1	-	-	1	1	-	2	-	-
Co4	Students will have the ability to solve real time problem based on FEA techniques.	2	1	2	-	-	2	2	-	_	1	2	2	2	-	1
Co5	Students will know more about design optimization.	2	1	1	-	-	2	2	-	-	1	2	2	2	-	1

115EDE02 ADDITIVE MANUFACTURING AND TOOLING	L 3	Т 0	P 0	C 3
OBJECTIVE:	-		Ţ	
□ To understand the concepts of the rapid prototyping methods.				
□ To know the applications of rapid prototype areas in industries.				
□ Able to know about rapid tooling techniques and its advantages.				
PREREQUISITE: Knowledge of Manufacturing Technology - I is required.				
UNIT I INTRODUCTION OF RAPID PROTOTYPING			08	
Need for the compression in product development, History of RP systems, Surv Growth of RP industry and classification of RP systems	vey	of app	plicat	tions,
UNIT II STEREO LITHOGRAPHY SYSTEMS AND SELECTIVE LASE	ER S	SINTI	ERIN	٧G
Stereo lithography Systems Principle Process parameters Process details Dat	a ni	renara	tion	Data
files and Machine details, Applications. Selective Laser Sintering, Types of mac	chi	nes, Pi	inci	ble of
operation, Process parameters, Data preparation for SLS, Applications.		,	1	
UNIT III FUSION DEPOSITION MODELING & SOLID GROUND CUI	RIN	١G	09	
Fusion Deposition Modeling: Principle, Process parameters, Path generation, A	App	olicatio	ons.	Solid
Ground Curing: Principle of operation, Machine details, Applications.		EDC	οτ	TNIC
UNIT IV LAMINATED OBJECT MANUFACTURING, CONCEPT MOL	JEI	LEKS		'END
Laminated Object Manufacturing, Principle of operation, LOM materials	s. I	Proces	s de	etails.
Applications. Concept Modelers, Principle, Thermo jet printer, Sander's n	nod	el ma	rket,	3-D
printer, GenisysXs printer, JP system 5, Object Quadra System, Laser Engin	eer	ed Ne	t Sha	aping
(LENS), principle, applications.				
UNIT V RAPID TOOLING	- 1:	C.	10	
Indirect Rapid Tooling, Shicone rubber tooling, Aluminum filled epoxy too	$\frac{0111}{2}$	ig, sp Jvami	ray 1 do 1	metal Panid
Tool DMILS ProMetal Sand casting tooling Laminate tooling soft tooling vs	s ha	rd too	ling	Case
Studies: Automotive and Aerospace Industries	, 114	14 100		Cuse
TO	DT	AL:4	5 Ho	ours
COURSE OUTCOMES:				
• Students will be familiarized with the various methods of ra	api	d pro	ototy	ping
technologies and rapid tooling.	· .T.	ľ	J	ΓO
• Students will be competently use the tools to explore digital manufac	tur	ing te	chni	ques
and CAD modelling software.		U		1
• Students will have an idea about different techniques available	ble	for	add	litive
manufacturing.				
• Students will be familiar with various additive techniques.				
• Students will be familiar with rapid tooling techniques.				
TEXT BOOKS:				
1. Paul. F. Jacobs, "Stereo lithography and other RP & M Technologies", 2000.	SN	1E, N	ew `	York,
 Hague R.J. M and Reever P.E., "Rapid Prototyping, Tooling and Manufacturing", Ra 2000. 	apra	1 Tech	nolog	y Ltd,
REFERENCE BOOKS:	_			
1. Pham. D. T. & Dimov. S. S., "Rapid Manufacturing", Verlag, London, 2012	2.			
2. Terry Wohlers, "Wohlers Report 2006", Wohlers Associates, 2006.	Nov	Varl	- 204	15
4. Serope Kalpak Jain and Steven R Schmid, "Manufacturing Engine	an	d Tec	hnol	ogy",
Pearson Edition, 6 ^{ui} Edition, 2009.	4.0.1			

	Course Outcome	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Students will be familiarized with the various methods of rapid prototyping technologies and rapid tooling.	1	-	3	-	-	3	3	1	-	-	1	1	2	-	2
Co2	Students will be competently use the tools to explore digital manufacturing techniques and CAD modelling software.	2	-	3	-	-	3	3	2	-	-	-	1	2	-	2
Co3	Students will have an idea about different techniques available for additive manufacturing.	2	-	3	-	-	3	3	2	-	-	-	1	2	-	2
Co4	Students will be familiar with various additive techniques.	1	-	3	-	3	3	3	1	-	-	1	1	2	-	2
Co5	Students will be familiar with rapid tooling techniques.	1	-	3	-	-	3	3	1	-	-	1	1	2	-	2

B

215EDT01	MECHANICS OF COMPOSITE MATERIALS	L	Т	Р	С
		3	0	0	3
OBJECTIVE	CS:				
The student w	ill able to				
1. Under	stand general characteristics of composite materials.				
2. Under	stand manufacturing process of composite materials.				
3. Under	stand mechanics of composite materials.				
4. Perfor	m various tests on composite materials to know its effect.				
5. Develo	op the equations based on laminates.				
PREREQUIS	TE: Knowledge of Composite Materials is required.				
UNIT I INTR	ODUCTION OF COMPOSITE MATERIALS		~	11	
Definition, Ne	ed, General Characteristics, Applications, Fibers – Glass, C	arbo	n, Cei	amic	c and
Aramid fibers,	Matrices – Polymer, Graphite, Ceramic and Metal Ma	trice	s, Fib	er su	rface
treatments, Fill	ers and Additives.			10	
UNIT II MAN	UFACIUKING OF COMPOSITES)tha	r Mon	12 Ifect	urina
Dag Moululing	, Compression Mountaing, Futurusion, Finament Winding, C		ostino		uning
Inspection met	hode	ze (asting	, Qi	Janty
INIT II ME	CHANICS OF COMPOSITES			13	
Rule of mixtu	re volume and mass fractions density void content Evalua	tion	of for	ir e	lastic
moduli based	on strength of materials approach and Semi-Empirical	mod	el. Lo	ngitu	Idinal
Young's modu	ilus, transverse Young's modulus, major Poisson's ratio. In-pla	ane	shear	mod	lulus.
Ultimate stren	ngths of a unidirectional lamina, Characteristics of Fibe	r-rei	nforce	d la	mina,
laminates, Lam	ination theory, Interlaminar stresses				, i i i i i i i i i i i i i i i i i i i
UNIT IV PRO	PERTIES OF COMPOSITES			12	
Static Mechan	ical Properties, Fatigue and Impact Properties, Environmenta	al ef	fects, l	Long	term
properties, Frac	cture Behavior and Damage Tolerance				
UNIT V LAM	INA CONSTITUTIVE EQUATIONS			12	
Lamina Const	itutive Equations: Lamina Assumptions - Macroscopic View	wpoi	nt. G	enera	alized
Hooke's Law.	Reduction to Homogeneous Orthotropic Lamina – Isotropic lin	nit c	ase, O	rthot	ropic
Stiffness matri	x (Qij), Definition of stress and Moment Resultants. Strain Dis	plac	ement	rela	tions.
Basic Assumpt	ions of Laminated anisotropic plates. Laminate Constitutive E	quat	ions –	Cou	pling
Interactions, H	Balanced Laminates, Symmetric Laminates, Angle Ply La	mina	ites, (Cross	Ply
Laminates. La	minate Structural Moduli. Evaluation of Lamina Properties fr	om	Lamin	ate	l'ests.
Quasi-Isotropic	Laminates. Determination of Lamina stresses within Laminates				
	ТО	TA]	L:60	но	JRS
		\sim	7		
		10	2		

- The students will have ability to identify the properties of composite materials.
- The students will have knowledge of manufacturing composite materials by using various methods.
- The students can analyse the mechanism of composite materials.
- The students can perform various tests on composite materials.
- The students can able to develop the equations based on laminates and to determine lamina stress within laminates.

TEXT BOOKS:

- 1. Robert M Jones, "Mechanics of composite materials (Materials science and Engineering Series)", Taylor and Francis, Second Edition, 2015.
- Mallick, P.K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 3rd Edition, 2007.

REFERENCE BOOKS:

- 1. Ronald Gibson, "Principles of Composite Material Mechanics", 4th Edition, Tata McGraw Hill, 2015.
- 2. Autar K. Kaw, "Mechanics of Composite Materials" CRC Press, NY, 2nd Edition, 2006.
- 3. Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", 3rd Edition, John Wiley and Sons, New York, 2006.
- 4. Halpin J.C, "Primer on Composite Materials, Analysis", Techomic Publishing Co, 2006.
- 5. Mallick P K and Newman S, "Composite Materials Technology: Processes and Properties", Hansen Publisher, Munish, 2006.
- 6. Chawla K.K., "Composite Materials", Springer Verlag, 1998.

	Course Outcome	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	The students will have ability to identify the properties of composite materials.	3	1	-	-	-	1	1	-	1	1	-	-	2	-	-
Co2	The students will have knowledge of manufacturing composite materials by using various methods.	3	1	-	-	-	1	1	-	1	1	-	-	2	-	-
Co3	The students can analyse the mechanism of composite materials.	3	1	-	-	-	1	1	-	1	1	-	-	2	-	-
Co4	The students can perform various tests on composite materials.	3	1	-	-	-	1	1	-	1	1	-	-	2	-	-
Co5	The students can able to develop the equations based on laminates and to determine lamina stress within laminates.	3	1	-	-	-	1	1	-	1	1	-	-	2	-	-

CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

215EDT02	MECHANICAL VIBRATIONS	L	T 1	P	C
	2.	3	I	U	4
 To gain the To gain the To underst fundament To gain the equation. To underst predict vib 	e knowledge on basic aspects of vibrations of Single degree of fr e knowledge on vibration of two degree of freedom system and F cand modes of vibration, Eigen values and Eigen vectors, Nur al frequencies including Multi-degree of freedom system. e knowledge on continuous system systems governed by wave of and concepts of designing systems to achieve the vibratory res- ratory behavior of mechanical systems.	eedo ⁷ orce merio equa	m syst ed vibr cal me tions a se, ana	em. ation thoc und H llyze	i. Is of Euler and
PREREQUIS	ITE: Knowledge of Kinematics of Machines, Dynamics of Mach	hiner	y are 1	equi	red.
UNIT - I FUN	DAMENTALS OF VIBRATION			12	
Introduction to degree freedom from frequence Virtual work, I	Single degree freedom system - free vibration systems, Dampen - forced vibration with elastically coupled viscous dampers, Sy response, Support motion, Duhamel's Integral, Impulse Lagrange's equation, Transient Vibration.	d vił yster Resp	oration n Iden oonse	is, Si tifica func	ingle ation tion,
UNIT - II TW	O DEGREE FREEDOM SYSTEM			12	
Free vibration	of spring-coupled system, Mass coupled system, Vibration of t	wo o	legree	free	dom
system, Forced	vibration, Vibration Absorber, Vibration isolation.				
UNIT- III MU	ILTI-DEGREE FREEDOM SYSTEM			12	
Normal mode vectors, Ortho	of vibration, Flexibility Matrix and Stiffness matrix, Eigen gonal properties, Modal matrix-Modal Analysis, Forced V lal damping in forced vibration Numerical methods for fundame	1 val ibrat	lues a ion by	nd e y m	atrix
UNIT- IV VI	BRATION OF CONTINUOUS SYSTEMS	intur	iieque	12	5.
Systems gover	ned by wave equations. Vibration of strings. Vibration of rods.	Eul	er Eau	atio	1 for
Beams, Effect	of Rotary inertia and shear deformation, Vibration of plates.		. 1		
UNIT - V EX	PERIMENTAL METHODS IN VIBRATION ANALYSIS			12	
Vibration instr	uments, Vibration exciters Measuring Devices, Analysis, Vib	ratio	n Test	s –	Free
and Forced Vil	pration tests, Examples of Vibration tests – Industrial, case studie	es.			
	ΤΟ΄	ГAL	: 60 H	HOU	RS
COURSE OU	TCOMES:				
The students	will be able to				
 Solve for freedom u motion. Construct 	the motion and the natural frequency of a freely vibrating in-damped motion and a freely vibrating single degree of the governing differential equation and its solution for	g sin free a v	igle d edom ibratii	egre dan ng r	e of nped nass
subjected	to an arbitrary force.			U	
Solve vib	ration problems that contain multiple degrees of freedom.				
• Solve vib effect of F	ration problems for the system governed by wave equat Rotary inertia and Sheer deformation for Continuous system	ions 1.	. Ider	ntify	the
effect of h	Rotary inertia and Sheer deformation for Continuous system	1.			

• Perform vibration tests for systems subjected to forced and free vibrations, also to analyse and solve the problems arising in Industry due to vibrations by proper case study

TEXT BOOKS:

- 1. Rao, J.S. and Gupta, K., "Introductory Course on Theory and Practice Mechanical Vibration", 2nd Edition, New Age International (P) Ltd., New Delhi, 2014.
- 2. William T. Thomson, Marie Dillon Dahleh., "Theory of Vibration with Applications", 5th Edition, CBS Publishers and Distributors, New Delhi, 2014.

REFERENCE BOOKS:

- 1. Den Hartog, J.P, "Mechanical Vibrations," Dover Publications, New York, 2013.
- 2. Rao V Dukkipatti, "Mechanical Vibrations", PHI Learning Pvt Ltd, 2nd Edition, 2012.
- 3. Rao, S.S., "Mechanical Vibrations", 6th Edition, Pearson Edition, 2011.
- 4. Iyengar R.N, "Elements of Mechanical Vibration", I K International Publishing House Pvt. Ltd., New Delhi, 2010.
- 5. A G Ambekar, "Mechanical Vibration and Noise Engineering", Prentice Hall of India, 2006.
- 6. Rao, J. S., Advanced Theory of Vibration: Nonlinear Vibration and One-dimensional Structures, New Age International, 1993.

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Solve for the motion and the natural frequency of a freely vibrating single degree of freedom un- damped motion and a freely vibrating single degree of freedom damped motion.	2	3	2	1	2	-	-	-	-	-	-	-	2	-	3
Co2	Construct the governing differential equation and its solution for a vibrating mass subjected to an arbitrary force.	2	1	3	1	-	-	-	-	-	-	-	-	2	-	2
Co3	Solve vibration problems that contain multiple degrees of freedom.	2	3	2	2	2	-	-	-	-	-	-	-	2	-	3
Co4	Solve vibration problems for the system governed by wave equations. Identify the effect of Rotary inertia and Sheer deformation for Continuous system.	1	2	3	2	2	-	-	-	-	-	-	-	2	-	3
Co5	Perform vibration tests for systems subjected to forced and free vibrations, also to analyse and solve the problems arising in Industry due to vibrations by proper case study	1	1	2	-	2	-	1	-	-	-	-	-	2	-	2

215EDT03	

L	Т	Р	С
3	1	0	4

OBJECTIVES:

- 1. To provide a foundation for the study of machine design.
- 2. To understand the advanced kinematics and synthesis of mechanisms to achieve desired motion.
- 3. To develop skills for designing and analyzing linkages, coupler curves.
- 4. To gain knowledge on the principles of advanced computer-based tools for analysis and synthesis of mechanisms.
- 5. To understand theory and application tools through a major mechanism design project.

PREREQUISITE: Knowledge of Kinematics of Machines is required.

12

12

12

12

12

Review of fundamentals of kinematics-classifications of mechanisms-components of mechanisms – mobility analysis – formation of one D.O.F. multi loop kinematic chains, Network formula – Gross motion concepts-Basic kinematic structures of serial and parallel robot manipulators-Compliant mechanisms-Equivalent mechanisms.

UNIT II KINEMATIC ANALYSIS

UNIT I INTRODUCTION

Position Analysis – Vector loop equations for four bar, slider crank, inverted slider crank, geared five four bar linkage jerk analysis. Plane complex mechanisms-auxiliary point method. Spatial RSSR bar and six bar linkages. Analytical methods for velocity and acceleration Analysis–mechanism-Denavit-Hartenberg Parameters – Forward and inverse kinematics of robot manipulators.

UNIT III PATH CURVATURE THEORY AND COUPLER CURVE

Fixed and moving centrodes, inflection points and inflection circle. Euler Savary equation, graphical constructions – cubic of stationary curvature. Four bar coupler curve-cusp-crunode coupler driven six-bar mechanisms-straight line mechanisms.

UNIT IV SYNTHESIS OF FOUR BAR MECHANISMS

Type synthesis – Number synthesis – Associated Linkage Concept. Dimensional synthesis – function generation, path generation, motion generation. Graphical methods-Pole technique inversion technique-point position reduction-two, three and four position synthesis of four- bar mechanisms. Analytical methods- Freudenstein's Equation-Bloch's Synthesis.

UNIT V SYNTHESIS OF MECHANISMS

Cognate Lingages-parallel motion Linkages. Design of six bar mechanisms-single dwelldouble dwell-double stroke. Geared five bar mechanism-multi-dwell. Cam Mechanismsdetermination of optimum size of cams. Mechanism defects.

Study and use of Mechanism using Simulation Soft-ware packages. Students should design and fabricate a mechanism model as term project.

TOTAL : 60 HOURS

CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

- The student will be able to identify the kinematic chain in a given machine.
- The student will be able to analyze a complex mechanism for displacement velocity and acceleration.
- Students will be familiar with basic concepts of path curvature and coupler curves.
- Students will have a solid theoretical background in kinematics and in the analysis and synthesis of mechanisms.
- Students will have the ability to apply theory and the use of practical engineering tools in a substantial mechanism design project.

TEXT BOOKS:

- 1. Uicker, J.J., Pennock, G. R. and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2016.
- 2. Sandor G.N., and Erdman A.G., "Advanced Mechanism Design Analysis and Synthesis", Prentice Hall, 2001.

REFERENCE BOOKS:

- 1. Kenneth J, Waldron, Gary L. Kinzel, "Kinematics, Dynamics and Design of Machinery", John Wiley-sons, 2016.
- 2. William Cleghorn and Nikolai Dechev, "Mechanics of Machines", Oxford University Press, Second Edition, 2014.
- 3. Robert L.Norton., "Design of Machinery", Tata McGraw Hill, 2011.
- 4. Ramamurti, V., "Mechanics of Machines", Narosa, 2010.
- 5. Amitabha Ghosh and Ashok Kumar Mallik, "Theory of Mechanism and Machines", EWLP, Delhi, 2006.

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	The student will be able to identify the kinematic chain in a given machine.	-	-	1	-	1	2	2	1	1	1	2	2	1	-	-
Co2	The student will be able to analyze a complex mechanism for displacement velocity and acceleration.	-	-	1	-	1	2	2	1	1	1	1	2	1	-	-
Co3	Students will be familiar with basic concepts of path curvature and coupler curves.	-	-	1	-	1	2	1	1	1	1	1	2	1	-	-
Co4	Students will have a solid theoretical background in kinematics and in the analysis and synthesis of mechanisms.	-	-	1	-	1	2	2	1	1	1	2	2	1	-	-
Co5	Students will have the ability to apply theory and the use of practical engineering tools in a substantial mechanism design project.	-	-	1	-	1	1	2	1	1	1	1	1	1	-	-

CHAIRMA BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

215EDT04	ADVANCED MACHINE DESIGN	L	T	P	C
ODIECTIVE		3	1	0	4
1 To study	>: Agging concents in order to enhance the fatigue of materia	مار			
1. To study	the systematic anging and a based on S. N and a N.		h		
2. To study	the systematic engineering design based on S-IN and E-IN a	ippi	oach.		
3. To study	about the formation of crack and effect of crack growth li	re e	stimat	10n.	
4. To study	behaviour of mechanical components under fatigue.				
5. To study	about the surface failure of machine parts due to wear.				
PREREOUIS	TE: Knowledge of Engineering Materials and Metallurgy is re-	anira	ed		
UNIT I INTI	RODUCTION	1411		12	
Role of failu	re prevention analysis in mechanical design. Modes of n	necł	nanica	l fail	lure.
Review of fa	ilure theories for ductile and brittle materials including I	Moh	r's th	eory	and
modified Mol	nr's theory. Numerical examples.			5	
Fatigue of M	laterials: Introductory concepts, High cycle and low cyc	le f	atigue	, Fat	igue
design model	s, Fatigue design methods, Fatigue design criteria, Fat	igue	e testi	ng, '	Test
methods and	standard test specimens, Fatigue fracture surfaces and man	cros	copic	featu	ıres,
Fatigue mech	anisms and microscopic features.				
UNIT II STR	RESS-LIFE AND STRAIN-LIFE APPROACH			12	_
Stress-Life (S-N) Approach: S-N curves, Statistical nature of fatigue	test	t data,	Ger	ieral
S-N behavior	Mean stress effects, Different factors influencing S-N bel	1av1	our, S	-N C	urve
representation	and approximations, Constant life diagrams, Fatigue life	e es	timati	on u	sing
S- N approach	l. (a N) Approach. Monotonia strass strain habevier. Str	in	aantre	had	tost
methods Cy	elic stress-strain behavior Strain based approach to	un v li	fe es	nieu timai	tion
Determination	of strain life fatigue properties Mean stress effects Effect	יו tof	surfa	ce fii	nish
Life estimation	n by ε -N approach.	1 01	Sulla		11511,
UNIT III LE	FM APPROACH			12	
LEFM concept	ots, Crack tip plastic zone, Fracture toughness, Fatigue cr	ack	grow	th, N	lean
stress effects,	Crack growth life estimation.		•		
Notches and	their effects: Concentrations and gradients in stress	an	id stra	ain,	S-N
approach for	notched membranes, mean Stress effects and Haigh dia	gra	ms, N	ume	rical
examples					
UNIT IV FA	TIGUE FROM VARIABLE AMPLITUDE LOADING	1 .1		12	C
Spectrum loa	as and cumulative damage, Damage quantification and		e con	icept	s or d
sequence effe	ton and accumulation, Cumulative damage theories, Los	au i	life	non	anu
Numerical ex	amples	633	inc a	ppro	acii.
Notch strain	analysis: Strain – life approach, Neuber's rule, Glinka's ru	ıle.	applic	atior	1s of
fracture mech	anics to crack growth at notches. Numerical examples.	<i></i> ,	uppne	unor	10 01
UNIT V SUF	RFACE FAILURE AND SURFACE FATIGUE			12	
Surface Fail	ure: Introduction, Surface geometry, Mating surface, I	Frict	tion, 1	Adhe	esive
wear, Abrasiv	e wear, Corrosion wear.				
Surface fatig	ue: spherical contact, Cylindrical contact, General contact	, D	ynami	c cor	ntact
stresses, Surfa	ace fatigue strength, Surface fatigue failure modes, Desig	n to	avoic	l Sur	face
failures.					
	T	ota	l: 60 I	IOU	RS
	CHAIRMA	2			

Students will have an ability to

- Design machine parts by considering fatigue failure.
- Reduce the failure of components based on stress strain to life relationships.
- Analyze the formation of crack, notches and their effects.
- Analyze behaviour of mechanical elements under fatigue from variable amplitude loading conditions.
- Analyze the wear behaviour of mechanical components.

TEXT BOOKS:

- 1. Ralph I. Stephens, Ali Fatemi, Robert, Henry o. Fuchs, "Metal Fatigue in engineering", John Wiley, New York, Second Edition. 2001.
- 2. Jack. A. Collins, "Failure of Materials in Mechanical Design", John Wiley, New York, 1992.

REFERENCE BOOKS:

- 1. Robert L Norton, "Machine Design", Prentice Hall, 5th Edition, 2014.
- 2. Fatigue and Fracture, ASM Hand Book, Vol 19, 2002.
- 3. S.Suresh, "Fatigue of Materials", Cambridge University Press, 1998.
- 4. Julie.A.Benantine, "Fundamentals of Metal Fatigue Analysis", Prentice Hall, 1990.

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Design machine parts by considering fatigue failure.	3	2	-	2	2	-	-	-	-	-	2	2	2	1	1
Co2	Reduce the failure of components based on stress - strain to life relationships.	3	2	-	2	2	-	-	-	-	-	2	2	1	1	-
Co3	Analyze the formation of crack, notches and their effects.	2	2	-	2	3	-	-	-	-	-	3	1	1	2	1
Co4	Analyze behaviour of mechanical elements under fatigue from variable amplitude loading conditions.	2	2	-	2	2	-	-	-	-	-	2	2	1	-	-
Co5	Analyze the wear behaviour of mechanical components.	2	2	2	2	3	-	-	-	-	-	2	2	2	1	1

B

215FDP07	CAF LABORATORY - II	L	Т	P	С
		0	0	4	2
1. To ur assem 2. To pr throug 3. To de analys use of 4. To u compo 5. To ga	derstand and practice the drawings of machine compo- blies using modeling packages. ovide the fundamental concepts of the theory of the fini- th software. velop proficiency in the application of the finite element re- is, and interpretation of results) to realistic engineering pro- a major commercial general-purpose finite element code. inderstand the concepts of Structural and thermal s- ponents.	onent te ele meth obler	ts an emen od (n ns thu ana	d si t me node roug	mple thod ling, h the 5 on
Modeling a	nd Assembling of mechanical machine components	usi	ng r	node	eling
software				15	
Modeling on	Assembling of Machine Vice, Tailstook, Connecting re-	1 Ch	onor	tool	haad
would have and	Assembling of Machine Vice, Talistock, Connecting for	i, Sh	aper	1001	neau
assembly etc.					
		_			
Analysis of n	nechanical machine components using analysis softwar	e		30	
Stress analysi	s in Curved beam.				
Single edge n	otched beam in four point bending.				
Torsion of Pr	ismatic bar with rectangular cross section.				
Contact Stres	s Analysis of Circular Disc under diametrical compression	•			
Vibration Cha	aracteristics of a Spring Mass Damper System.				
Buckling, Ber	nding and Modal analysis of stiffened Panels.				
Design Optim	nization problems (shape and weight optimization).				
Thermal Stree	ss Analysis a thick walled cylinder filled with a fluid at hig	gh ter	npera	ature	•
FE Modeling	and Failure Analysis of welded joints, bolted joints and	d adł	nesiv	e bo	nded
joints.					
	1	'otal	: 45 I	JOH	JRS
COURSE OU	TCOME:				
The students	will have ability to				
Mode software	and assemble the drawings of any mechanical produc	ts us	sing 1	mod	eling
Select	the method meshing analysis and ontimize the real tir	ne n	roble	ms i	ising
finite	element analysis software.	ne p		1115 (ising
• Evalu	ate and interpret FEA analysis results for design and evalu	ation	purp	oses	5
Devel	op a basic understanding of the limitations of the FE meth	iod a	nd ur	nders	stand
the po	ssible error sources in its use.				
• Use a	nalysis software for the application and use of the FF	E me	thod	for	heat
transf	er and structural problems.				

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Model and assemble the drawings of any mechanical products using modeling software.	3	1	-	-	-	-	-	-	-	-	-	3	2	-	-
Co2	Select the method, meshing, analysis and optimize the real time problems using finite element analysis software.	1	2	-	-	-	-	-	-	-	1	-	-	2	1	-
Co3	Evaluate and interpret FEA analysis results for design and evaluation purposes	2	2	-	-	-	-	-	-	-	-	-	2	2	2	-
Co4	Develop a basic understanding of the limitations of the FE method and understand the possible error sources in its use.	3	2	-	-	-	-	-	-	-	-	-	-	2	1	1
Co5	Use analysis software for the application and use of the FE method for heat transfer and structural problems.	2	2	-	-	-	-	-	-	-	-	-	-	1	-	-

D

215EDE02	INTEGRATED MANUFACTURING SYSTEMS	L 3	Т 0	P 0	C 3
 OBJECTIVES 1. To under 2. To gain 1 manufact 3. To gain th 4. To gain th 5. To know 	S: rstand the production systems. knowledge on group technology, computer aided process plant uring systems in modern manufacturing. he knowledge on computer aided planning and control. he knowledge of computer monitoring. the concepts of integrated manufacturing system.	ning	and i	ntegi	rated
PREREQUIS	ITE: Knowledge of CAD/CAM/CIM is required.				
UNIT I INTR Objectives of classification of manufacturing	ODUCTION a manufacturing system-identifying business opportunities of production systems-linking manufacturing strategy and sy operations.	es a ysten	nd p ns an	8 roble alysi	ems- s of
UNIT II GROU	P TECHNOLOGY AND COMPUTER AIDED PROCESS PLAN	NIN(,	9	
Introduction-pa benefits of greater standards.	art families-parts classification and coding - group technologoup technology. Process planning function CAPP – Compu	ter g	machi genera	ne c ited	ells- time
UNIT III CON Production pla requirements identification s	MPUTER AIDED PLANNING AND CONTROL anning and control-cost planning and control-inventory man planning (MRP)-shop floor control-Factory data collection ystem-barcode technology- automated data collection system.	ager sys	nent- tem-A	9 Mat Auton	erial
UNIT IV CON	APUTER MONITORING			9	
Types of proc control & strate inspection met CAQC with CA	luction monitoring systems-structure model of manufacturing egies- direct digital control-supervisory computer control compu- thods non-contact inspection method – computer aided testin AD/CAM.	g pr iter i ng -	ocess, n QC integ	pro - con ratio	ntact n of
UNIT V INTE	GRATED MANUFACTURING SYSTEM			10	
Definition - ap handling syste Manufacturing variable missio system-comput Intelligence and	oplication - features - types of manufacturing systems- mach em- computer control system - DNC systems manufactur Systems (FMS) - the FMS concept transfer systems - hear on manufacturing system - CAD/CAM system - human labor in the integrated manufacturing system benefits. Rapid protot d Expert system in CIM.	ine ring 1 ch the typin	tools cell. anging manu g -	mate Flex g FN factu Artif	rials (ible (IS - (ring (icial)
	ТОТ	ΓAL	: 45 I	HOU	RS
COURSE OU Students will Get good Get good Understa understa Understa	TCOMES: be able to d exposure on manufacturing systems. d exposure on CAPP systems for rotational and prismatic pa and the effect of manufacturing automation strategies and with computer monitoring and control of manufacturing. and the production monitoring system. and the applications of FMS and Rapid prototyping concept	arts a deriv s.	and G ve pro	¦Τ. ວduc	tion
TEXT BOOK	S:				
 Mikell Manufact James A Pearson/I 	P Groover, "Automation, Production System and Con- uring", Pearson/Prentice-Hall of India, 2012. A Rehg and Henry W Kroebber, "Computer Integrated Prentice-Hall of India 2005	mput 1 N	ter I Ianufa	ntegr icturi	ated
r caisoil/f	CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENG Adhiyamaan College of Englin (Autonomous) Hosur - 635 109.	5 INE	ERIN	G	

REFERENCE BOOKS:

- 1. Yorem Koren, "Computer Integrated Manufacturing Systems", McGraw Hill, 2010.
- 2. David Bedworth, "Computer Integrated Design and Manufacturing", TMH, New Delhi, 1998.
- 3. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International, 1st Edition, 1986.
- 4. R.W. Yeomans, A. Choudry and P.J.W. Ten Hagen, "Design rules for a CIM system", North Holland Amsterdam, 1986.

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Get good exposure on manufacturing systems.	-	-	2	-	-	1	1	-	-	-	1	1	2	-	1
Co2	Get good exposure on CAPP systems for rotational and prismatic parts and GT.	-	3	-	1	1	2	2	-	-	-	-	1	-	3	-
Co3	Understand the effect of manufacturing automation strategies and derive production metrics with computer monitoring and control of manufacturing.	-	2	1	-	1	-	-	-	-	-	1	1	-	3	-
Co4	Understand the production monitoring system.	3	1	-	2	-	-	1	-	-	-	-	2	-	-	2
Co5	Understand the applications of FMS and Rapid prototyping concepts.	2	-	-	-	1	-	-	-	2	-	2	-	2	-	3

CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

215EDE03

DESIGN FOR MANUFACTURE, ASSEMBLY AND **ENVIRONMENT**

L	Т	Р	С
2	Δ	Δ	2

8

10

OBJECTIVES:

- 1. To aquire knowledge on process capability and tolerances, form design.
- 2. To know about the factors influencing form design.
- 3. To gain the knowledge on component design for machining consideration, casting consideration in component design and design for the environment.
- 4. To gain the knowledge on group technology concepts.
- 5. To know about the environmental objectives and global issues.

PREREQUISITE: Knowledge of Machine drawing is required.

UNIT I PROCESS CAPABILITY AND TOLERANCES

General design principles for manufacturability - strength and mechanical factors, mechanisms selection, Evaluation method, Process capability - Feature tolerances, Geometric tolerances. Worst case method - Assembly limits, Datum features, Tolerance stacks.

UNIT II FACTORS INFLUENCING FORM DESIGN

Influence of materials on form design - form design of grey iron, malleable iron, steel and aluminium castings - form design of welded members, forgings.

UNIT III COMPONENT DESIGN - MACHINING CONSIDERATION

Design features to facilitate machining - drills, milling cutters, keyways, Doweling procedures, Counter sunk screws - Reduction of machined area, simplification by separation, simplification by amalgamation. Design for machinability - Design for economy, Design for clampability, Design for accessibility, Design for assembly.

UNIT IV COMPONENT DESIGN - CASTING CONSIDERATION

Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design -Modifying the design - Group technology, Computer Applications for DFMA. 9

UNIT V DESIGN FOR THE ENVIRONMENT

Introduction – Environmental objectives, Global issues, Regional and local issues. Basic DFE methods - Design guide lines, Example application. Lifecycle assessment - Basic method, AT&T's environmentally responsible product assessment. Weighted sum assessment method Lifecycle assessment method, Techniques to reduce environmental impact, Design to minimize material usage. Design for disassembly, Design for recyclability, Design for remanufacture, Design for energy efficiency, Design to regulations and standards. **TOTAL : 45 HOURS**

COURSE OUTCOMES:

The students will be able to

- Understand the complex interrelationships between design and manufacturing.
- Explore and understand basic manufacturing processes and the design for • manufacturing (DFM) implications of design choices for specific manufacturing processes.
- Understand the role of components design with machining consideration. •
- Understand approaches and practices related to CAD model building and model checking for specific manufacturing processes such as models for sheet metal and models for casts and molds.
- To know about environmental issues with case study.

CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

TEXT BOOKS:

- 1. Bralla, "Design for Manufacture Handbook", Second Edition, McGraw-Hill, New York, 1999.
- 2. Peck, Harry, "Design for Manufacture", Pitman Publications, 1983.

REFERENCE BOOKS:

- 1. George E Dieter, "Engineering Design- Material and processing approach", McGraw Hill Intl., 2nd Edition, 2000.
- 2. Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", Second Edition, Marcel Dekker Inc., London, 2002.
- 3. Kevien Otto and Kristin Wood, "Product Design", Pearson Publication, New Delhi, 2004.
- 4. Matousek, "Engineering Design- A Systematic Approach", Blackie & Son Ltd, London, 1974.

	Course Outcome	P O 1	P O 2	P O 3	Р О 4	P O 5	P O 6	P O 7	P O 8	Р О 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Understand the complex interrelationships between design and manufacturing.	3	-	2	-	2	1	1	-	-	-	-	-	3	-	1
Co2	Explore and understand basic manufacturing processes and the design for manufacturing (DFM) implications of design choices for specific manufacturing processes.	2	-	2	-	1	1	-	-	1	-	-	-	1	-	1
Co3	Understand the role of components design with machining consideration.	2	-	2	-	1	1	-	-	1	-	-	-	1	-	1
Co4	Understand approaches and practices related to CAD model building and model checking for specific manufacturing processes such as models for sheet metal and models for casts and molds.	2	-	2	-	1	1	-	-	1	-	-	-	1	-	1
Co5	To know about environmental issues with case study.	2	-	2	-	1	1	-	-	1	-	-	-	1	-	1

315EDE01	MICRO ELECTRO MECHANICAL SYSTEMS		T	P	C
OBIECTIVE	z.	3	U	U	3
1. To kn	ow the principles and processes involved in MEMS devi	ces.			
2. To kn	ow about the methods of device construction, materials a	and t	heir		
charac	terization.				
3. 10 km	ow about micromechanics and micro manufacturing.	ian	•		
$\begin{array}{c} 4. 10 \text{ eu} \\ 5 \text{To gai} \end{array}$	in the basic understanding of modeling & to apply in var	ious	es. annli	catio	ne
UNIT I INTR	ODUCTION	ious	appin	0	/115.
Overview. Mi	crosystems and microelectronics. Working principle of	Mic	rosvste	ems.	micro
actuation techr	niques-micro sensors-types, microactuators-types, micropump	5- m	icromo	otors	-micro-
valves-microgi	ippers, scaling laws-scaling in geomentry, scaling in rigid b	ody	dynam	nics,	scaling
in electrostatic	forces, scaling in electricity, scaling in fluid mechanics, scaling	ng ir	heat t	rans	fer.
UNIT II MAT	ERIALS AND FABRICATION PROCESS			9	,
Substrates and	t water-single crystal silicon water formation, ideal sub-	ostra sii:	tes -	mec	hanical
- Gallium arse	enide Quartz-piezoelectric crystals polymers for MEMS	, SIII -con	ductive		lymers
Photolithograp	hy, Ion implantation, Diffusion, Oxidation, CVD, Physic	cal	vapor	dep	osition,
Deposition by	epitaxy, etching process.		1	1	
UNIT III MI	CROMECHANICS			9	
Introduction-s	tatic bending of thin plates-circular plates with edge fixed, red	ctang	gular p	late	with all
edges fixed an	d square plate with all edges fixed, Mechanical vibration-res	onar	nt vibra	ation	, micro
fracture macha	-design theory and damping coefficients, thermo mechan	11CS, 1 fra	therm	ai s	tresses,
	'BO SVSTEM MANUEACTURING AND PACKACING	1 11 a		9	ames.
Clean room te	chnology. Bulk Micro manufacturing- surface micro mach	inin	g –LIC	GA-S	SLIGA-
Micro system	packaging-materials-die level-device level-system, level-pac	kagi	ng tec	hniq	ues-die
preparation, su	rface bonding, wire bonding, sealing.	_			
UNIT V MIC	RO SYSTEM DESIGN			9	
Design consid	erations-process design, mask layout design, mechanical	desig	gn-app	licat	ions of
micro system i	n automotive industry, bio medical, aero space-telecommunic	ation	1S. TAT	45	Tanna
COURSEOU	TCOMES	10	IAL :	: 45 .	Hours
The student sh	build be able to				
• Under	stand the basic principles involved in MEMS.				
• Becon	ne familiar with micro fabrication techniques.				
Analy	ze the mechanics involved in the product before manufac	cturi	ng.		
• Select	the suitable manufacturing & packaging techniques.				
• Asses	s whether using a MEMS based solution is the relevant a	nd t	est ap	pro	ach for
suitab	le applications.				
		\sim			
		E	Ø		
	CH	AIF	ZMAR	1	EC
	BOARD	CHA	NICA	LE	IGINEER
	Adhiyamaan (A	Colli	ege of	109	
	Hos	sur -	635	109	-

TEXT BOOKS:

- 1. Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture and Nanoscale Engineering", John Wiley and Sons Inc, 2008.
- 2. Rai –choudhury P, "MEMS and MOEMS Technology and Applications", PHI learning Private Limited, 2009.

REFERENCE BOOKS:

- 1. James J Allen, Dekker, "Micro Electro Mechanical System Design", CRC Press, 2010.
- 2. Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2002.
- 3. Francis E.H Tay and W.O Choong, "Microfludics and BioMEMS Applications", Springer, 2002.
- 4. Julian W. Gardner, Vijay K.Varadan, Osama O.Awadel Karim, "Microsensors MEMS and Smart Devices", John Wiley & sons Ltd., 2001.
- 5. S.Fatikow, U.Rembold, "Microsystem Technology and Microrobotics", Springer- Verlag Berlin Heidelberg, 1997.

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	Р О 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Understand the basic principles involved in MEMS.	2	1	-	-	-	-	-	-	-	1	-	-	1	2	-
Co2	Become familiar with micro fabrication techniques.	1	2	-	-	-	-	-	-	-	-	-	-	1	1	-
Co3	Analyze the mechanics involved in the product before manufacturing.	1	1	-	-	3	-	-	-	-	-	-	-	1	-	3
Co4	Select the suitable manufacturing & packaging techniques.	1	1	-	-	-	-	-	-	-	-	-	-	1	1	1
Co5	Assess whether using a MEMS based solution is the relevant and best approach for suitable applications.	3	2	1	-	2	-	-	-	-	-	-	-	2	1	3

315EDE03

L	Т	Р	С
3	0	0	3

OBJECTIVES:

- 1. To know the concept of PLM and its impact on the organization.
- 2. To provide an overview of the current thinking on the principles, strategies and application of PLM, followed by an in-depth look at specific areas of PLM that are the focus of today's innovative organizations.
- 3. To understand the conceptual of PLM, along with the latest industry views on PLM applications.
- 4. To know the present frame works which provide economic justification for PLM projects and explain the pit falls of a piecemeal approach to PLM.
- 5. To know integration of PLM/PDM with other application.

UNIT I INTRODUCTION AND PRODUCT LIFE CYCLE ENVIRONMENT 9

Background, Overview, Need, Benefits, Concept of Product Life Cycle. Components / Elements of PLM, Emergence of PLM, Significance of PLM, Customer Involvement.

Product Data and Product Workflow, Company's PLM vision, The PLM Strategy, Principles for PLM strategy, Preparing for the PLM strategy, Developing a PLM strategy, Strategy identification and selection, Change Management for PLM.

UNIT II PRODUCT DEVELOPMENT PROCESS & METHODOLOGIES 9

Integrated Product development process - Conceive – Specification, Concept design, Design - Detailed design, Validation and analysis (simulation), Tool design, Realize – Plan manufacturing, Manufacture, Build/Assemble, Test (quality check), Service - Sell and Deliver, Use, Maintain and Support, Dispose. Bottom-up design, Top-down design, Front loading design workflow, Design in context, Modular design. Concurrent engineering work structuring and team Deployment - Product and process systemization - problem, identification and solving methodologies. Product Reliability, Mortality Curve. Design for Manufacturing, Design for Assembly. Design for Six Sigma.

UNIT III PRODUCT MODELLING AND TYPES OF ANALYSIS TOOLS 9

Product Modeling - Definition of concepts - Fundamental issues - Role of Process chains and product models -Types of product models - model standardization efforts-types of process chains - Industrial demands.

Design for manufacturing - machining - casting and metal forming - optimum design - Design for assembly and disassembly - probabilistic design concepts - FMEA - QFD - Taguchi Method for design of experiments -Design for product life cycle. Estimation of Manufacturing costs, Reducing the component costs and assembly costs, Minimize system complexity.

UNIT IV PRODUCT DATA MANAGEMENT (PDM) TECHNOLOGY

Product Data Management – An Introduction to Concepts, Benefits and Terminology, CIM Data. PDM functions, definition and architectures of PDM systems, product data interchange, portal integration, PDM acquisition and implementation.

UNIT V RECENT ADVANCES

Intelligent Information Systems - Knowledge based product and process models - Applications of soft computing in product development process - Advanced database design for integrated manufacturing.

TOTAL: 45 Hours

9

9

The student shall be able to

- Understand product data, information, structures and PLM concepts.
- Apply PLM systems in organization verticals including production, after sales, sales and marketing, and subcontracting.
- Measure benefits of PLM implementation in daily operations, material costs, productivity of labor and quality costs.
- Apply PLM concepts for service industry and E-Business.
- Recognize tools and standards in PLM.

TEXT BOOKS:

- 1. Grieves Michael, "Product Lifecycle Management", McGraw-Hill, 2006.
- Antti Saaksvuori, Anselmi Immonen, "Product Life Cycle Management", Springer, 3rd Edition, 2008.

REFERENCE BOOKS:

- 1. Kari Ulrich and Steven D. Eppinger, "Product Design & Development", McGraw Hill International Edns, 5th Edition, 2011.
- 2. Stark, John "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2005.
- 3. Burden, Rodger PDM: "Product Data Management", Resource Pub, 2003.
- 4. Crnkovic, Ivica; Asklund, Ulf; & Dahlqvist, Annita Persson. "Implementing and Integrating Product Data Management and Software Configuration Management", Artech House Publishers, 2003.
- 5. Jerry Clement, Andy Coldrick, & John Sari, "Manufacturing Data Structures", John Wiley & Sons, 1992.

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Understand product data, information, structures and PLM concepts.	1	1	-	3	3	-	-	-	-	2	-	-	1	-	3
Co2	Apply PLM systems in organization verticals including production, after sales, sales and marketing, and subcontracting.	1	1	-	3	3	-	-	-	-	2	-	-	1	-	3
Co3	Measure benefits of PLM implementation in daily operations, material costs, productivity of labor and quality costs.	1	1	-	3	3	-	-	-	-	2	-	-	1	-	3
Co4	Apply PLM concepts for service industry and E-Business.	1	1	-	3	3	-	-	-	-	2	-	2	1	-	3
Co5	Recognize tools and standards in PLM.	1	1	-	3	3	-	-	-	-	2	-	-	1	-	3

315EDE04	DESIGN OF MATERIALS HANDLING SYSTEMS	L	T	P	C
OBIECTIVI	79.	3	U	U	3
1. To learn design of	fundamental principles of material handling systems. ' hoist in material handling.	Го	unders	stanc	the
2. To impar 3. To famil	t knowledge on various drives used for material handling e iarize on transfer mechanism, conveyors, part feeding d	quip levic	oment [*] ces in	's. ma	terial
4. To devel	system. op knowledge on the construction & working of elevated	ors,	escala	ators	and
5. To under	stand specific requirements of material handling systems a	nd tl	neir de	esign	1.
UNIT I MAT	ERIALS HANDLING EQUIPMENT			6	
Types of mater of material har	rial handling equipments, selection of material handling equipmed and the second s	ents	and ap	plica	ations
UNIT II DES	IGN OF HOISTS			10	
Design of hois	sting elements - Welded and roller chains, Hemp and wire rop	es, I	Design	of r	opes,
pulleys, pulley	systems, sprockets and drums, Load handling attachments. Des	sign	of for	ged l	100ks
and eye hooks Brakes - shoe.	s - crane grabs, lifting magnets, Grabbing attachments. Desig	n of	f arres	ting	gear.
UNIT III DRI	VES OF HOISTING GEAR			10	
Hand and pow slewing. Jib an	er drives - Traveling gear, Rail traveling mechanism, cantilever a d luffing gear - cogwheel drive, selecting the motor ratings.	and	monor	ail cr	anes,
UNIT IV CON	WEYORS			10	
Types – descr	iption, design and applications of Belt conveyors, apron conve	eyors	s and e	escal	ators,
Pneumatic con	veyors, Screw conveyors and vibratory conveyors.				
UNIT V ELE	VATURS	ah	oft mo	9 	idaa
counter weight	s hoisting machine safety devices Design of fork lift trucks	- sn	alt wa	y, gi	indes,
	J	ЮТ	AL:4	5 H	ours
COURSE OU	TCOMES:				
• The stuck handling	lents will be able to understand the concepts and benefits systems.	of ł	oetter	mate	erial
• The stuc work are	lents will be able to understand the proper selection, use a hazard assessments and training	and	care	thro	ugh
The course handling	rse would familiarize the student on the technique to select	t sui	table	mate	erial
The Stue	dent will be able to design material handling equipments	suc	h as d	lrive	s of
• To dem	onstrate knowledge of the safe shifting of materials in a	dia	ry pro	oces	sing
operatio	n.				
1 Dudonk	5: N "Motorials handling aquinment" EI nyas Dublighers 1	070	`		
1. Rudenko	yoy, A.O. and Dyachkoy, V.K. "Convoying Machines"	1970 Val	J.	Lon	АП
MIR Pul	blishers, 1985.	VOI	umes	1 al	iu II,
REFERENCE	E BOOKS:				
1. Alan M Manager	Iulemann, John Oakland, Keith Locker, "Production ment" Macmillan India Ltd. 2015.	aı	nd O	pera	tions
2. Datta A	K, "Materials Management: Procedures, Text and Cases"	", P	rentico	e Ha	all of
3. Everett	E. Adam Jr & Ronald J. Ebert, "Production and Operation	ons	Mana	gem	ent",
Prentice	Hall of India, 2003 (Digitized 2008).	1.	0.1		
4. Alexand	rov, M., Materials Handling Equipments', MIR Publishers	<u>× 19</u>	81.		

	Course Outcome	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	The students will be able to understand the concepts and benefits of better material handling systems.	2	2	1	3	-	-	-	-	2	1	1	1	2	-	1
Co2	The students will be able to understand the proper selection, use and care through work area hazard assessments and training.	2	2	1	3	-	-	-	-	2	1	1	1	2	-	1
Co3	The course would familiarize the student on the technique to select suitable material handling equipment and design them based on the need.	2	2	1	2	-	-	-	-	1	1	1	1	2	-	1
Co4	The Student will be able to design material handling equipments such as drives of hoisting gears, conveyors, elevators.	2	3	-	1	-	-	-	-	2	1	-	-	2	-	1
Co5	To demonstrate knowledge of the safe shifting of materials in a diary processing operation.	1	2	1	3	1	-	-	-	2	1	1	1	2	-	1

B CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

2155	DDATECT WODK (DUASE - 1)	L	Т	P	С
313E	PROJECT WORK (PHASE – 1)	0	0	12	6
OBJE	CTIVES:				
1. To	strengthens the students to carry out the project on their ow	vn and	to in	nplen	nent
th	r innovative ideas.			-	
2. To	deepen comprehension of principles by applying them to a	new p	roble	m wl	nich
m	y be the design and manufacture of a device, a research	inves	tigatio	on or	an
an	lysis.				
3. To	create innovative learning environments aimed at increasi	ng the	valu	e of	the
tra	ning pathways perception and at the rise of self confidence.				
4. To	the development of a virtual reflecting learning approact	h to f	oster	the	real
in	olvement of all the students, included those students comin	g from	less	favoi	ired
en	ironments.				
5. To	investigate the development of the student innovation ideas.				
GUID	LINES				
1. T	e project work is to enable the individual student to work on a project	ect invo	lving t	heore	tical
ar	l experimental studies related to the branch of study.				
2. E	ery project work shall have a guide who is the member of the fact	ilty of t	he ins	titutio	n.
3. E	ch student shall finally produce a comprehensive report	coverin	ng ba	ckgro	ound
		Tho f	anol r	nort	~h_11
in	ormation, literature survey, problem statement and methodology	· · · · · ·	mai re	pon	snan

- 1. The progress of the project is evaluated by a review committee consisting of a minimum of three members.
- 2. The review committee may be constituted by the Head of the Department.
- 3. The continuous assessment shall be made by conducting three reviews.
- 4. Final review will be done by the committee that consists of minimum of three members one of which should be the guide. (If possible include one external expert examiner within the college)

The students will have

- Ability to make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Skills to communicate effectively and to present ideas clearly and coherently to specific audience in both the written and oral forms
- Collaborative skills through working in a team to achieve common goals.
- Ability to learn on their own, reflect on their learning and take appropriate actions to improve it.
- Ability to estimate and cost the human and physical resources required, and make plans to obtain the necessary resources

TOTAL : 150 Hours

Course Outcome		P 0 1	P O 2	P O 3	Р О 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Ability to make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.	2	2	2	-	-	-	-	-	-	1	-	-	3	-	2
Co2	Skills to communicate effectively and to present ideas clearly and coherently to specific audience in both the written and oral forms	2	2	-	-	-	-	-	-	-	1	-	-	3	-	2
Co3	Collaborative skills through working in a team to achieve common goals.	3	2	-	-	2	-	-	-	-	1	-	-	3	-	-
Co4	Ability to learn on their own, reflect on their learning and take appropriate actions to improve it.	2	2	3	3	2	-	-	-	-	1	-	-	3	-	1
Co5	Ability to estimate and cost the human and physical resources required, and make plans to obtain the necessary resources	2	2	3	3	2	-	-	-	-	1	-	-	3	-	1

G J CHAIRMAN BOARD OF STUDIES FACULTY OF MECHANICAL ENGINEERING Adhiyamaan College of Engineering (Autonomous) Hosur - 635 109.

315EDP02

OBJECTIVES:

- 1. To make the students to get practical exposure and learn about various activities happening in the industries.
- 2. To make the students to learn about effective communication, presentation skills and report preparation.
- 3. To build the strength, team work spirit and self confidence in students life.
- 4. To develop skills in the application of theory to practical work situations.
- 5. To increase a student's strength of responsibility and good work habits.

GUIDELINES

- □ It is mandatory that each student should undergo internship / in-plant training in reputed industries for the duration of 2-3 weeks after second semester end examination. Then the student has to submit a hard copy of the training report not less than 10 pages. Also he / she has to give presentation on the training report for about 30 minutes.
- □ Students are encouraged to use various teaching aids such as over head projectors, power point presentation and demonstrative models.

EVALUATION

- □ The training report will be evaluated by the faculty in-charge.
- There is internal assessment and end examination.

TOTAL: 30 Hours

COURSE OUTCOMES:

- The students will have practical knowledge about various activities like process design, quality control that are takes place in industries.
- The students will have the skills about effective communication, presentation and report preparation.
- The students are able to improve their problem solving and critical thinking skills.
- The students are able to identify the professional standards.
- The students are able to create or modify the new technology policies.

Course Outcome			P O 2	P O 3	Р О 4	P O 5	P O 6	Р О 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	The students will have practical knowledge about various activities like process design, quality control that are takes place in industries.	2	3	-	-	-	-	-	-	-	1	1	-	2	-	-
Co2	The students will have the skills about effective communication, presentation and report preparation.	2	1	2	-	-	-	-	-	-	1	1	-	2	-	-
Co3	The students are able to improve their problem solving and critical thinking skills.	2	1	1	-	-	-	-	-	-	1	1	-	2	-	-
Co4	The students are able to identify the professional standards.	2	2	1	-	-	-	-	-	-	1	1	-	2	-	-
Co5	The students are able to create or modify the new technology policies.	3	2	1	-	-	-	-	-	-	1	1	-	3	-	-

41	5EDP01	Project Work (Phase – II)	L 0	Т 0	P 30	C 15	
 OBJECTIVES: The objectives of the project are 1. To get an opportunity to synthesize knowledge from various areas of learning, and critically and creatively apply it to real life situations. 2. To acquire skills like collaboration, communication and independent learning, prepares them for lifelong learning and the challenges ahead. 3. To deepen comprehension of principles by applying them to a new problem which may be the design and manufacture of a device, a research investigation or an analysis. 4. To use the engineering technical skills and modern engineering tools necessary for practical applications. 5. To document and present one's own research work, with strict requirements on structure, format, and language usage for publication. 							
GU 1. 2. 3. 4.	IDELINE The project experiment Every pro- They sho Each stu informati	S ect work is to enable the individual student on a project invol- ntal studies related to the branch of study. oject work shall have a guide who is the member of the faculty uld publish the papers in the journals / conferences. ident shall finally produce a comprehensive report co- on, literature survey, problem statement, project work details rt shall be typewritten form as specified in the guidelines	ving of tl verin and	theore ne ins ag ba concl	etical titutic ackgro usion	and n. ound . The	
EV	ALUATIC	N					
1. 2. 3. 4.	The progra three men The review The conti Final revi of which college)	ress of the project is evaluated by a review committee consisting observation bers. w committee may be constituted by the Head of the Department. nuous assessment shall be made by conducting three reviews. ew will be done by the committee that consists of minimum of should be the guide. (If possible include one external expert of	g of thre exam	a min e mer iner v	nimui nbers withii	n of s one n the	
		ΤΟ΄	ГAL	: 90	ног	RS	
CO	 URSE OU The stude Use the practive Use de of var Take prope Create Gain control 	TCOMES: ents will be able to he engineering technical skills and modern engineering to cal applications. esign principles and develop conceptual, engineering desi- ious components. up any challenging practical problems and find solution r methodology by attending different conferences. e the document for research article with correct format and Practical knowledge about various activities like processe of that are taking place in industries.	ools gn a on b stru es, c	nece nd fa y for cture lesigr	ssary brica mula ,	' for ttion tting ality	
		05	2				

Course Outcome		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	Р О 11	P O 12	P S O 1	P S O 2	P S O 3
Co1	Use the engineering technical skills and modern engineering tools necessary for practical applications.	-	2	-	1	-	-	-	-	-	-	-	1	1	-	1
Co2	Use design principles and develop conceptual, engineering design and fabrication of various components.	2	1	-	1	-	-	-	-	-	-	-	1	-	2	-
Co3	Take up any challenging practical problems and find solution by formulating proper methodology by attending different conferences.	2	2	-	2	-	-	-	-	-	-	-	1	-	3	-
Co4	Create the document for research article with correct format and structure.	-	1	-	2	-	-	-	-	-	-	-	2	-	-	2
Co5	Gain Practical knowledge about various activities like processes, design, quality control that are taking place in industries.	-	1	-	2	-	-	-	-	-	-	-	2	-	-	2

